Title

Identification of Lhp1-associated RNAs by Microarray Analysis in Saccharomyces Cerevisiae Reveals Association with Coding and Noncoding RNAs.

Document Type

Article

Publication Date

11-10-2003

Abstract

La is a conserved eukaryotic RNA-binding protein best known for its role in the biogenesis of noncoding RNAs transcribed by RNA polymerase III. To broaden our understanding of the function of the La homologous protein (Lhp1) in Saccharomyces cerevisiae, we have taken a genomics approach. Lhp1 ribonucleoprotein complexes were immunoprecipitated and bound RNAs were examined by hybridization to whole-genome microarrays that include >6,000 ORFs, documented noncoding RNAs, and the intervening intergenic regions. Demonstrating the validity of this approach, associations with previously known Lhp1p-associated RNAs were detected and associations with additional noncoding RNAs, including multiple tRNAs and small nucleolar RNAs, were revealed. Indicating that this approach provides a robust method for discovering RNAs, the data also identify associations between Lhp1p and several intergenic regions, three of which encode the recently annotated putative snoRNAs: RUF1, RUF2, and RUF3. Unexpectedly, we find that Lhp1p is also associated with a subset of coding mRNAs. These mRNAs include many ribosomal protein transcripts as well as the mRNA encoding Hac1p, a transcription factor required during the unfolded protein stress response. In cells lacking LHP1, Hac1p levels are decreased 2- to 3-fold, whereas no changes are detected in the levels of spliced or unspliced HAC1 mRNA or in the stability of Hac1p. Finally, although LHP1 is dispensable for growth under standard conditions, we find that it is required when the unfolded protein response is induced at elevated temperatures. These results suggest that Lhp1p may play a novel role in the translation of one or more cellular mRNAs.

Publication Name

Proceedings of the National Academy of Sciences of the United States of America

Volume Number

101

First Page

434

Last Page

439

Issue Number

2

DOI

doi: 10.1073/pnas.0307425100