Comparison of Lunge and Bulgarian Split Squat Kinematics and Kinetics between a Subject with Patellofemoral Pain Syndrome and a Non-pathological Control

Nick Cahill, SPT, Michelle Flores, SPT, Abigail Merrill, SPT, Tyler Sheldon, SPT
Faculty Sponsor: Karen Lomond, PhD
Introduction

- **Prevalence:**
 - PFPS prevalence ranges from 3-85%
 - Most commonly in the literature reported as 25%
 - 1.5-7.3% of all patients seeking medical care

- **Demographic information:**
 - Occurs across the lifetime, from young children to older sedentary adults
 - Depends on activity level and environmental context
 - High prevalence between 12 and 19 y/o or 50 and 59 y/o
 - 55% are women

- **Recurrence: 70-90%**
 - 50-56% of adolescents report persistent knee pain after 2 yrs
Purpose

- To investigate the **hip, knee and ankle kinematics and kinetics** of a patient with movement coordination impairment (MCI) patellofemoral pain syndrome (PFPS) when performing a **bulgarian split squat (BSS)** compared to a **lunge**.
Hypothesis

For patients with MCI PFPS, **lunge**s will have **less frontal plane movement and torque in the hip, knee, and ankle** than Bulgarian split squats.
Rationale

- In healthy populations, there is no significant difference in knee-valgus angle across exercises\(^3\), but in patients with MCI PFPS, there is **dynamic knee valgus** throughout all squatting exercises\(^4\)
Rationale

- Patients with MCI PFPS in comparison to controls without PFPS
 - ↑’ed medial knee displacement AND ↑ed hip adduction and knee external rotation during single-leg squats\(^5\)
 - ↑’ed frontal plane projection angle AND muscle weakness in hip abductors, extensors and external rotators during step-down\(^1\)
- Given the above exercise’s similarity to a single-loaded leg during BSS, medial displacement and the resulting valgus forces will most likely be similar in BSS\(^1,\,^5\)

1. Almeida 2016
5. Willson 2008
Rationale

For PSFS patients:

Forward Lunge

More stable on the front-loaded leg (both legs on the ground and less of an anterior weight shift)

Bulgarian Split Squat

Need to stabilize more on the front-loading leg since the majority of weight is shifted over that leg*

=> Greater external varus/valgus forces requiring greater internal stabilization forces at knee, increasing potential for dynamic valgus collapse

Loading progression for knee conditions²:
lunge to single-legged squat due to ↑ed BOS during lunges and greater knee joint moments

2. Comfort 2015
Methods: Participant Characteristics

- Participant characteristics of both subjects:
 - Healthy participants (no pathology or pain)
 - 23 year olds
 - Caucasian

<table>
<thead>
<tr>
<th>Participant characteristics</th>
<th>1 subject performing typical squat mechanics (control)</th>
<th>1 subject imitating squat with dynamic knee valgus (experimental)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>Height: 5’3” Weight: 125 lbs BMI: 22</td>
<td>Male Height: 5’10” Weight: 160 lbs BMI: 23</td>
</tr>
</tbody>
</table>
Methods: Motion Capture

- 3D motion capture reflective markers were attached at points on the hip, knee and ankle for data collection in the frontal and sagittal planes.
- The motion capturing system is not able to directly measure rotation angles.
- Joint angles and moments around the hip, knee, and ankle were automatically calculated.

This is an example of the marker locations used, but is not an actual image of markers used in this study.
Methods

- Independent variable: exercises (BSS and lunge), 2 subjects (imitating pathological and healthy control)
- Dependent variables: frontal and sagittal angles and torque at hip, knee and ankle
- 3 repetitions of BSS (over 17” chair) and lunges with the left leg forward
- Data averaged over 3 trials and 2 individuals
 - Recorded angles and torques at hip, knee and ankle in frontal and sagittal planes
Lunge: Frontal
Bulgarian Split Squat: Frontal
+: flexion
-: extension
+: flexion
-: extension
+: adduction
-: abduction
+: adduction
-: abduction
Results

- Greater hip and knee adduction angles in the PFPS lunge and BSS.

- Greater hip and knee adduction torques in the PFPS conditions
 - Peak adduction torque at hip and knee: greater with bulgarian split squats than lunges across conditions

- Greater extension moments were seen in the PFPS subject in lunges and BSS
Discussion: Our results compared to the literature

- Women with PFPS in step-down exercise present with greater dynamic knee valgus (increased frontal projection angle) and decreased hip torque:
 - Our results: BSS similar to step-down, BSS showed increased knee valgus (agreed) but not decreased hip muscle torque (possibly due to using a healthy participant who is able to compensate with increased strength at the hip)

<table>
<thead>
<tr>
<th>FPPA, hip and trunk strength in the patellofemoral pain (PPG) and control groups (CG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPG</td>
</tr>
<tr>
<td>FPPA Initial (degrees)</td>
</tr>
<tr>
<td>FPPA Peak (degrees)</td>
</tr>
<tr>
<td>Abduction (N.m/kg)</td>
</tr>
<tr>
<td>Extension (N.m/kg)</td>
</tr>
<tr>
<td>External rotation (N.m/kg)</td>
</tr>
<tr>
<td>Posterolateral (N.m/kg)</td>
</tr>
<tr>
<td>Lateral core (N.m/kg)</td>
</tr>
</tbody>
</table>

Abbreviations: FPPA, Frontal Plane Projection Angle.
Discussion: Our results compared to the literature

- When patients with PFPS perform single-leg squats, there is increased medial displacement of hip and FPPA compared to healthy control.
 - Consistent with our results: BSS similar to SLS, BSS had increased medial displacement of hip (agree)

![Graph showing hip adduction angle during squats](image1)

FIGURE 8. Frontal plane projection angles of the knee during single-leg stance and single-leg squats for females with patellofemoral pain syndrome (PFPS) and a healthy female control group. Error bars represent standard errors of the mean. *P<.05.
Limitations

- Experimental PFPS conditions were mimicked by a healthy subject
- Only 2 subjects were used
- Each type of lunge was only performed 3 times by each subject
- Recovery times were not specific
- Subjects did not fatigue during exercise and therefore, did not need significant recovery break
- Data Outliers (ankle data)
Take-Aways

- Greater stress is placed on the medial knee joint when performing squat-like exercises with similar mechanics to those seen in someone with MCI PFPS.
- Bulgarian split squats and lunges had larger hip and knee adduction torques in the PFPS condition.
- Bulgarian split squats had larger hip and knee adduction torques compared to lunges.
Clinical implications

- Lesser hip adduction torques in the PFPS conditions likely indicates a lack of hip abductor strength\(^1\)
 - Rehab for PFPS should focus on hip abductor strengthening
- Patients should be educated on proper technique for any squat variation
 - Often, knee valgus can be reduced to some degree by focusing on preventing it.
 - “Don’t let your knees cave in”
- Lunges may be better to use at first with PFPS patients
- Bulgarian split squats might be useful as a “pre-hab” exercise in healthy athletic populations
 - Help to simulate the forces at the knee present in cutting motions in sports.
 - Used to train for stability at the knee

\(^1\) Almeida 2016

