A unified framework for multi-level analysis of distributed learning

Document Type

Conference Proceeding

Publication Date



Learning and knowledge creation is often distributed across multiple media and sites in networked environments. Traces of such activity may be fragmented across multiple logs and may not match analytic needs. As a result, the coherence of distributed interaction and emergent phenomena are analytically cloaked. Understanding distributed learning and knowledge creation requires multi-level analysis of the situated accomplishments of individuals and small groups and of how this local activity gives rise to larger phenomena in a network. We have developed an abstract transcript representation that provides a unified analytic artifact of distributed activity, and an analytic hierarchy that supports multiple levels of analysis. Log files are abstracted to directed graphs that record observed relationships (contingencies) between events, which may be interpreted as evidence of interaction and other influences between actors. Contingency graphs are further abstracted to two-mode directed graphs that record how associations between actors are mediated by digital artifacts and summarize sequential patterns of interaction. Transitive closure of these associograms creates sociograms, to which existing network analytic techniques may be applied, yielding aggregate results that can then be interpreted by reference to the other levels of analysis. We discuss how the analytic hierarchy bridges between levels of analysis and theory. © 2011 ACM.

Publication Name

ACM International Conference Proceeding Series

First Page


Last Page




This document is currently not available here.