Anti-bat flight activity in sound-producing versus silent moths

Document Type


Publication Date



The ultrasonic clicks produced by some tiger moths - all of which possess bat-detecting ears - are effective acoustic aposematic or mimetic signals, conferring protection against aerial hawking bats. Clicks are produced in response to bat echolocation calls. Palatable, silent non-tiger-moth species with bat-detecting ears fly away from distant bats and effect erratic flight maneuvers or stop flying in response to the calls of bats nearby. These flight responses are also an effective defense. We tested the hypotheses that sound-producing tiger moths (i) do not exhibit the reduction in flight time typical of silent, palatable moth species when presented with ultrasound simulating bat echolocation calls and (ii) exhibit more flight activity than silent, palatable species both in the presence and absence of ultrasound. We found that sound-producing tiger moths did not significantly reduce flight activity to bat-like sounds and that silent tiger moths and other noctuoid species did. We also found that sound-producing tiger moths flew significantly more than did silent species in both the presence and the absence of ultrasound. The benefits of acoustic aposematism may allow sound producers to spend more time aloft than silent species and thereby improve their chances of successful reproduction. © 2008 NRC Canada.

Publication Name

Canadian Journal of Zoology

Volume Number


First Page


Last Page


Issue Number




This document is currently not available here.